
PowerPC User-Level Instruction Set
Quick Reference Card

© Copyright 2010, Tennessee Carmel-Veilleux <tcv@ro.boto.ca>

Based on a mnemonic presentation idea from Bill Karsh in his
PowerPC tutorial series in MacTech magazine (http://macte.ch/luHry)

Notation
|| Concatenation of bit blocks
| Alternation
UIMMnn Unsigned immediate of nn bits (ie: UIMM16 = 16 bits)
SIMMnn Signed immediate of nn bits (ie: SIMM26 = 26 bits)
EXT Sign-extend to word
(rA|0) In some instances, value “0” for register rA (meaning r0)

is a special case that actually means “use the value 0”.
< > List of functional suffixes (append 0 or 1 from the list)
[] List of optional suffixes (0 or more, in the order specified)
Example of multiple suffixes for an instruction:
add<c | e | me | ze>[o, .]: add, addc, addme, addze, addo, addco,
addeo, addmeo, addzeo, add., addc., adde., addme., addze., addo.,
addeo., addmeo., addzeo. are all valid.

Registers
• r0-r31: General-purpose integer registers
• LR: Link register, saves return address of branches that link
• CTR: Counter for auto-decrementing loops
• CR: Condition register

• composed of 8 condition records (CR0-CR7)
• saves results of comparisons and ALU operations

• XER: Exception register, saves overflow and carry states

Label suffixes
Assemblers general recognize several suffixes for labels and values.
These suffixes provide ways to extract only parts of an operand for use
in immediate values.
• VALUE@h: Only the high 16-bit part (bits 0-15).
• VALUE@ha: Like @h, but adjusted to compensate for sign

extension applied by an “addi VALUE@l” on the same register.
• VALUE@l: Only the low 16-bit part (bits 16-31).

NOTE: Compare the following two ways to load an immediate value
into a register (equivalent in result but different in spirit):

1. addis rD, 0, VALUE@ha
addi rD, rD, VALUE@l

2. addis rD, 0, VALUE@h
ori rD, rD, VALUE@l

With the first method, the addi instruction does sign extension on its
16-bit signed immediate operand. If we want to load, for instance
0x12348765, the value 0x8765 from “0x12348765@l” will be sign-
extended to 0xFFFF8765. This will cause an off-by-one error if we
add it with 0x12340000 from addis rD,0, 0x12348765@h. The @ha
suffix verifies this condition (“negative” low 16 bits) and adjusts the
high-part so that when it is added with the sign-extended low part, the
result correct: 0x12348765 in our case. With the second method, using
ori which does not sign-extend its operand, the high part requires no
adjustment.

Load and store instructions
Addressing modes
The PowerPC has only two addressing modes, but combining them
with the load/store instructions options yields many possibilities. The
addressing modes (using lwz as an example) are:
• lwz rD, offset(rA|0) → Register-indirect with immediate offset

→ EA = (rA + offset) or (0 + offset)
→ Offset is a 16 bit signed immediate value

• lwzx rD, (rA|0), rB → Register-indirect with indexing
→ EA = (rA + rB) or (0 + rB)

Single loads and stores

Instruction Operation

lbz[u,x] rD,d(rA) rD ← byte from MEM[EA]

lhz[u,x] rD,d(rA) rD ← half-word from MEM[EA]

lha[u,x] rD,d(rA) rD ← sign-extended half word from
MEM[EA]

lwz[u,x] rD,d(rA) rD ← word from MEM[EA]

stb[u,x] rS,d(rA) rS[24:31] → MEM[EA] (store byte)

sth[u,x] rS,d(rA) rS[16:31] → MEM[EA] (store half-word)

stw[u,x] rS,d(rA) rS → MEM[EA] (store word)

• “z” load suffix: treat as unsigned, zero-extend, right-justify.
• “a” load suffix: “algebraic”: sign-extend to word.
• [u]: “update”: if (rA != 0) then rA←EA after load or store. In the

case of loads, condition (rD != rA) also applies (logically so).
• [x]: “with indexing” (see addressing modes above), use operands

as in “lwzx rD, (rA|0), rB” instead of “lwz rD, d(RA)”.

Multiple loads and stores

Instruction Operation

lmw rD,d(rA) n = (32 – rD); n consecutive words starting
at EA are loaded into GPRs rD through r31.
For example : lmw r29,0(r8) loads r29, r30
and r31 from consecutive, increasing
addresses starting at EA.

stmw rS,d(rA) n = (32 – rS); n consecutive words starting
at EA are stored from the GPRs rS through
r31. For example, if rS = 29, r29, 30 and
r31 are stored at consecutive, increasing
addresses starting at EA.

String loads and stores (lswi, lswx, stswi, stswx) are omitted for brevity and
because they are not available on all PPCs.

Arithmetic and logic instructions
Addition, subtraction, negation

Instruction Operands Operation

add<c,e>[o,.] rD,rA,rB rD ← rA + rB

addi<s,c,c.> rD,(rA|0),SIMM rD ← (rA|0) + EXT(SIMM16)

addme[o,.] rD,rA rD ← rA + XER[CA] - 1

addze[o,.] rD,rA rD ← rA + 0 + XER[CA]

neg[o,.] rD,rA rD ← (¬rA + 1)
(2's complement negation)

subf<c,e>[o,.] rD,rA,rB rD ← rB – rA

subfic rD,rA,SIMM rD ← EXT(SIMM16) – rA

subfme[o,.] rD,rA rD ← -1 – rA + XER[CA]

subfze[o,.] rD,rA rD ← 0 – rA + XER[CA]
• “i” suffix: “immediate”: second operand is 16-bit sign-extended

immediate value.
• “s” suffix: “shifted”: immediate value is logical shifted left 16 bits

prior to being used.
• “z” suffix: replaces rB with immediate value 0 (0x00000000).
• “m” suffix: replaces rB with immediate value -1 (0xFFFFFFFF).
• “e” suffix: extended add or subtract. The value of XER[CA] is

added to the result, enabling multi-word carry arithmetic. The
value of XER[CA] is updated by these operations also.

• “c” suffix: carry updated. XER[CA] is updated with the operation's
carry state (by default, the carry is unaffected).

• [o]: overflow updated. XER[OV] and XER[SO] are updated
according to whether the operation overflows or not.

• [.]: Record result of operation in CR0 (<0, >0, =0, SO)

NOTE: Many features have been omitted for brevity. This includes Floating-Point operations and registers, supervisor-level operations, string load and stores and ALTIVEC instructions.
Revision 1, October 12, 2010. © Copyright 2010, Tennessee Carmel-Veilleux <tcv@ro.boto.ca>, Find the original at http://www.tentech.ca/ppc-assembly-card

mailto:tcv@ro.boto.ca
http://macte.ch/luHry
mailto:tcv@ro.boto.ca

Bitwise logical operations and shifts

Instruction Operands Operation

and[c,.] rD,rA,rB rD ← rA ˄ rB

andi. rD,rA,UIMM rD ← rA ˄ UIMM16

andis. rD,rA,UIMM rD ← rA ˄ (UIMM16 << 16)

cntlzw[.] rD,rA rD ← number of leading zeros in rA

eqv[.] rD,rA,rB rD (rA rB)¬ Ø Å (would be “xnor”)

extsb[.] rD,rA rD ← EXT(rA[24:31]) (sign-extend
low byte of rA)

extsh[.] rD,rA rD ← EXT(rA[16:31]) (sign-extend
low half-word of rA)

nand[.] rD,rA,rB rD ← ¬(rA ˄ rB)

nor[.] rD,rA,rB rD ← ¬(rA ˅ rB)

or[c,.] rD,rA,rB rD ← rA ˅ rB

ori rD,rA,UIMM rD ← rA ˅ (UIMM16)

oris rD,rA,UIMM rD ← rA ˅ (UIMM16 << 16)

slw[.] rD,rA,rB rD ← rA << rB[26:31] (logical)

srw[.] rD,rA,rB rD ← rA >> rB[26:31] (logical)

srawi[.] rD,rA,UIMM rD ← rA >> UIMM5 (arithmetic)

sraw[.] rD,rA,rB rD ← rA >> rB[26:31] (arithmetic)

xor[c,.] rD,rA,rB rD rA rB¬ Å

xori rD,rA,UIMM rD rA (UIMM16)¬ Å

xoris rD,rA,UIMM rD rA (UIMM16 << 16)¬ Å

• [c]: Complement (invert) the value from rB prior to using it. The
actual value residing in rB is unaffected.

• [.]: Record result of operation in CR0 (<0, >0, =0, SO)
• NOTE: on shifts, values 0-32 are valid. For arithmetic shift rights,

a value of 32 fills the word with the sign bit. For logical shift lefts,
a value of 32 sets the word to 0.

Multiplication

Inst. Operands Operation

mulhw rD,rA,rB rD ← rA × rB (32 upper bits of 64-bit result)

mulli rD,rA,SIMM rD ← (rA × SIMM16) (32 lower bits of 48-
bit result)

mullw rD,rA,rB rD ← rA × rB (32 lower bits of 64-bit result)

Division

Inst. Operands Operation

divw<u>[o,.] rD,rA,rB rD ← rA ÷ rB
• “u” suffix: treat operands as unsigned numbers
• [o]: Record overflow of result
• [.]: Record result of operation in CR0 (<0, >0, =0, SO)

Rotate and mask

Inst. Operands Operation

rlwimi[.] rD,rA,UIMM,MB,ME rD ← rotate rA left by UIMM bits,
mask and insert result in rD

rlwinm[.] rD,rA,UIMM,MB,ME rD ← rotate rA left by UIMM bits
and mask

rlwnm[.] rD,rA,rB,MB,ME rD ← rotate rA left by rB bits and
mask

• For all these instructions, a mask M is built by starting with a zero-
word (0x00000000) and setting bits to “1” starting at bit number
MB and ending at bit number ME, both inclusive. It is possible to
wrap-around while generating the mask (ie: MB > ME).

Examples:
MASK(MB,ME) with MB=29 and ME=3:

0
↓

1
↓

2
↓

3
M

E
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29
 M

B
30

 ↓
31

 ↓

1 1 1 1 0 1 1 1

MASK(MB,ME) with MB=8 and ME=14:

0 1 2 3 4 5 6 7
8

M
B

9
 ↓

10
 ↓

11
 ↓

12
 ↓

13
 ↓

14
 M

E
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rlwimi r3,r4,6,20,25 (r4 = 0x0FF0_0017, r3 = 0x12AB_CDEF)

1. Generate mask : MASK(20,25) = 0x0000_0FC0
2. Rotate source: tmp1 = r4 ROL 6 = 0xFC00_05C3
3. Extract field: tmp2 = tmp1 ˄ MASK = 0x0000_05C0
4. Mask destination: tmp3 = r3 ˄ ¬MASK = 0x12AB_C02F
5. Insert field in destination: r3 ← tmp2 ˅ tmp3 = 0x12AB_C5EF
The previous 5 steps as binary:
1. 0b0000_0000_0000_0000_0000_1111_1100_0000
2. 0b1111_1100_0000_0000_0000_0101_1100_0011
3. 0b0000_0000_0000_0000_0000_0101_1100_0000
4. 0b0001_0010_1010_1011_1100_0000_0010_1111
5. 0b0001_0010_1010_1011_1100_0101_1110_1111
rlwinm r3,r4,12,20,31 (r4 = 0x5A70_00BB)
1. Generate mask : MASK(20,31) = 0x0000_0FFF
2. Rotate source: tmp1 = r4 ROL 12 = 0x000B_B5A7
3. Extract field in destination: r3 ← tmp1 ˅ MASK = 0x0000_05A7

Comparison instructions
Inst. Operands Operation

cmp crD,L,rA,rB Compare signed rA to rB

cmpi crD,L,rA,SIMM Compare signed rA to EXT(SIMM16)

cmpl crD,L,rA,rB Compare unsigned rA to rB

cmpli crD,L,rA,UIMM Compare unsigned rA to
(0x0000 || UIMM16)

• crD can be omitted. In that case, the assembler assumes cr0.
• The L field means “Long” (64-bit compare) if set to “1”, or 32-bit

compare if set to “0”. On 32-bit PowerPC, L should always be set
to “0”. Because of this, a simplified mnemonic exists for all
“cmp”-series instructions: “cmpw crD, rA, rB” is equivalent to
“cmp crD,0,rA,rB”, etc.

• For all these instructions, the result of a comparison from rA to
(rB|SIMM|UIMM) is stored in the specified condition register crD.
For example, cmp 3,0,rA,rB would yield cr3 = ”100 || XER[SO]” if
rA < rB, cr3 = “010 || XER[SO]” if rA > rB and cr3 = “001 ||
XER[SO]” if rA = rB.

Condition register manipulation instructions
Inst. Operands Operation

crand crbD,crbA,crbB crbD ← crbA ˄ crbB

crandc crbD,crbA,crbB crbD ← crbA ˄ ¬crbB

creqv crbD,crbA,crbB crbD (crbA crbB)¬ Ø Å

crnand crbD,crbA,crbB crbD ← ¬(crbA ˄ crbB)

crnor crbD,crbA,crbB crbD ← ¬(crbA ˅ crbB)

cror crbD,crbA,crbB crbD ← crbA ˅ crbB

crorc crbD,crbA,crbB crbD ← crbA ˅ ¬crbB

crxor crbD,crbA,crbB crbD crbA crbB¬ Å

mcrf crD,crA crD ← crA (move field A to field D)

crclr crbD Simplified for crxor crbD,crbD,crbD

crmove crbD,crbA Simplified for cror crbD,crbA,crbA

crnot crbD,crbA Simplified for crnor crbD,crbA,crbA

crset crbD Simplified for creqv crbD,crbD,crbD
• For the cr<OP> instructions, operands crb[A,B,D] mean “condition

register bit”, with value 0-31. All of these instructions carry-out
logical operations between single bits of the CR, no matter what
the conventional “meanings” of the bits are (<0, >0, =0, SO).

Example:
• cror 0,5,6 : CR[0] ← CR[5] ˅ CR[6] , thus cr0[=0] ← 1, if cr1

had “>=” comparison result, otherwise cr0[=0] ← 0.

NOTE: Many features have been omitted for brevity. This includes Floating-Point operations and registers, supervisor-level operations, string load and stores and ALTIVEC instructions.
Revision 1, October 12, 2010. © Copyright 2010, Tennessee Carmel-Veilleux <tcv@ro.boto.ca>, Find the original at http://www.tentech.ca/ppc-assembly-card

mailto:tcv@ro.boto.ca

Branch instructions
The PowerPC architecture uses a very flexible branching unit to
decode the several fields contained in branch instructions. We will
cover the basic branch instructions and their fields, and then present
tables and examples of simplified branch mnemonics.

Field names
• BI (Branch Input): which bit of the CR is used as a branch

condition
• BO (Branch Options): how to treat CTR and BI to determine if

branching occurs
• Target: where to branch

Branch instructions

Inst. Operands Operation

b[l,a] target Branch unconditionally

bc[l,a] BO,BI,target Branch conditionally

bclr[l] BO,BI Branch to LR conditionally

bcctr[l] BO,BI Branch to CTR conditionally
• [l]: linking: store current PC + 4 in LR, so that a “blr” instruction

can be used to return from a function call.
• [a]: absolute: target is an absolute address instead of a PC-relative

displacement.
• For the b[l,a] instruction, target is a 26-bit signed

immediate with 2 LSbs always “0” (4-bytes aligned).
Maximum branch distance is [-33,554,432...33,554,428].

• For the bc[l,a] instruction, target is a 16-bit signed
immediate with 2 LSbs always “0” (4-bytes aligned).
Maximum branch distance is [-32,768...32764].

• In the case of non-absolute (no [a] option) branches, the
target displacement is added to PC. A displacement of 0 is
an infinite loop at the current PC. For the unconditional
branch ([a] option), the target is still signed, but the
displacement is based around 0x0000_0000.

• To obtain the value of PC, one can branch linking to the next
instruction (bl +4). The LR will contain the PC value at that next
instruction. This trick is used by compilers to access local constant
pools inserted after function return instructions.

• PowerPC assemblers and linkers will always adjust relocations so
that displacements and labels can be specified directly, without
having to adjust the value formats to the field formats. For
example, “b +8” will get encoded as a target of 0x000002 (stripped
of the 2 LSbs) automatically in the instruction.

• BI values can be simplified with constants named cr0 through cr7
with values 0-7 respectively and constants named lt,gt,eq,so with
values 0-3 respectively . Then, cr4[<0], which is BI=16 can be
written as (cr4*4)+lt.

BO values

BO Branch if Symbol

0000y Decremented CTR ≠ 0 and the condition is false. dnzf

0001y Decremented CTR = 0 and the condition is false. dzf

001zy Branch if the condition is false. f

0100y Decremented CTR ≠ 0 and the condition is true. dnzt

0101y Decremented CTR = 0 and the condition is true. dzt

011zy Branch if the condition is true. t

1z00y Decremented CTR ≠ 0 (only CTR checked). dnz

1z01y Decremented CTR = 0 (only CTR checked). dz

1z1zz Branch always.]]
• Symbols (3rd column of table above): the “c” of “bc” and the BO

field value can be omitted and replaced with one of these symbols
as a suffix. For example, and assuming y=z=0, the instruction
“bc 8,5,label” can be replaced with “bdnzt 5,label”.

• “y” bits are “branch likely to be taken” hints if set to “1”. This is
ignored by many implementations. A suffix of “-” added to the
instruction clears this bit (branch not likely taken). A suffix of “+”
added to the instruction sets this bit (branch likely taken).
Example: “bdnzt+ 5,label” is equivalent to “bc 9,5,label”.
Many processors of the PowerPC family ignore this hint.

• “z” bits should be zeroed as they are for future extensions.

Examples:
• bc 8,5,label : Branch if decremented CTR ≠ 0 and CR[5] = “1”.
• bdnzt 5,label : same as above.
• bdnzt (cr1*4)+gt,label : same as above.
• bl label: Branch and link to label (call function, return with blr).
• blr: Branch unconditional to LR (return from function).
• bdza label: Branch absolute to label if decremented CTR = 0.
• btctr lt: Branch to CTR if cr0[<0] (CR[0]) = “1”.
• bf eq,label: Branch to label if cr0[=0] (CR[2]) = “0”.

Simplified branches (or “classic” branches)
There are simplified “branch conditional” mnemonics that emulate the
classic branches of other instruction sets. These mnemonics are for
instructions that do not test the CTR.

Instruction Operands Operation

b<test>[l,a] [crN,]target Branch conditionally

b<test>lr[l] [crN] Branch to LR conditionally

b<test>ctr[l] [crN] Branch to CTR conditionally
• [crN] is an optional CR subfield number (ie: cr0-cr7), on which

the test will take place. If omitted, the default is cr0.

Simplified branches tests (using b<test> as example)

Symbol Branch if

beq Equal, or zero (cr[=0] = “1”)

bge Greater than or equal (cr[>0] = “1” ˅ cr[=0] = “1”)

bgt Greater than (cr[>0] = “1”)

ble Less than or equal (cr[<0] = “1” ˅ cr[=0] = “1”)

blt Less than (cr[<0] = “1”)

bne No equal, or not zero (cr[=0] = “0”)

bng Not greater than (equivalent to ble)

bnl Not less than (equivalent to bge)

bns Not summary overflow (cr[SO] = “0”)

bso Summary overflow (cr[SO] = “1”)

Examples:
• bne label : Branch to label if cr0[=0] = “0”.
• bsola cr2,label : Branch absolute linking to label if
cr2[SO] = “1”.

• bltl label : Branch linking to label if cr0[<0] = ”1”.
• beqctr cr4 : Branch to CTR if cr4[=0] = “1”.
• bgtlrl : Branch linking to LR if cr0[>0] = “1”.
• bl label: Branch and link to label (call function, return with blr).
• blr: Branch unconditional to LR (return from function).

Special Purpose Register (SPR) Operations
Inst. Operands Operation

mcrxr crD crD ←XER[0:3] then zero XER[0:3]

mfcr rD rD ← CR[0:31]

mfspr rD,SPR rD ← SPR

mtcrf crM,rS CR updated with rS[crM] (see notes below)

mtspr SPR,rS SPR ← rS

mtcr rS Simplified for mtcrf 0xFF, rS
• crM is an 8 bit immediate mask (value 0x00-0xFF). The MSb

means cr0, the LSb means cr7, and bits in between mean cr1-cr6.
For example, crM = 0xA2 = 0b1010_0010 would mean to load
cr0, cr2 and cr6 from rS into the CR, and leave the other fields
(cr1,cr3,cr4,cr5 and cr7) intact.

• There are simplified mtspr mnemonics for several SPRs which
allow the omission of the SPR number: mtctr, mtlr, mtxer.

• There are simplified mfspr mnemonics for several SPRs which
allow the omission of the SPR number: mfctr, mflr, mfxer.

NOTE: Many features have been omitted for brevity. This includes Floating-Point operations and registers, supervisor-level operations, string load and stores and ALTIVEC instructions.
Revision 1, October 12, 2010. © Copyright 2010, Tennessee Carmel-Veilleux <tcv@ro.boto.ca>, Find the original at http://www.tentech.ca/ppc-assembly-card

mailto:tcv@ro.boto.ca

Trap and System Call Instructions
Inst. Operands Operation

sc —— System call

tw TO,rA,rB Trap if rA <TO> rB is true

twi TO,rA,SIMM Trap if rA <TO> EXT(SIMM16) is true
• TO is a 5-bit field of conditions to test. If any of the conditions are

met, the trap is taken.
• TO[0] (ie: mask = 0b10000) means (a < b)
• TO[1] (ie: mask = 0b01000) means (a > b)
• TO[2] (ie: mask = 0b00100) means (a = b)
• TO[3] means (a < b) with unsigned compare
• TO[4] means (a > b) with unsigned compare

Condensed alphabetical instructions list
Instruction Operation

add[.] rD,rA,rB Add

addc[o,.] rD,rA,rB Add, saving carry

adde[o,.] rD,rA,rB Add extended (adding carry)

addi rD,(rA|0),SIMM Add immediate

addis rD,(rA|0),SIMM Add immediate shifted

addic[.] rD,(rA|0),SIMM Add immediate shifted saving carry

addme[o,.] rD,rA Add to minus one, extended

addze[o,.] rD,rA Add to zero, extended

and[.] AND

andc[.] AND with complement

andi. rD,rA,UIMM AND with immediate

andis. rD,rA,UIMM AND with shifted immediate

b[l,a] target Branch always

bc[l,a] BO,BI,target Branch conditionally

bcctr[l] BO,BI Branch conditionally to CTR

bclr[l] BO,BI Branch conditionally to LR

beq[l,a] [crN,]target Branch on equal (or zero)

bge[l,a] [crN,]target Branch on greater than or equal

bgt[l,a] [crN,]target Branch on greater than

ble[l,a] [crN,]target Branch on lower than or equal

blt[l,a] [crN,]target Branch on lower than

bne[l,a] [crN,]target Branch on not equal (or non-zero)

bng[l,a] [crN,]target Branch on not greater than

bnl[l,a] [crN,]target Branch on not lower than

bns[l,a] [crN,]target Branch on not summary overflow

bso[l,a] [crN,]target Branch on summary overflow

cmp [crD,]L,rA,rB Compare signed

cmpi [crD,]L,rA,SIMM Compare signed with immediate

cmpl [crD,]L,rA,rB Compare unsigned

cmpli [crD,]L,rA,UIMM Compare unsigned with immed.

cntlzw[.] rD,rA Count leading zeros in word

crand crbD,crbA,crbB AND on CR bits

crandc crbD,crbA,crbB AND complemented on CR bits

crclr crbD Clear CR bit

creqv crbD,crbA,crbB EQV on CR bits

crmove crbD,crbA Move CR bit

crnand crbD,crbA,crbB NAND on CR bits

crnor crbD,crbA,crbB NOR on CR bits

crnot crbD,crbA NOT on CR bit

cror crbD,crbA,crbB OR on CR bits

crorc crbD,crbA,crbB OR complemented on CR bits

crset crbD Set CR bit

crxor crbD,crbA,crbB XOR on CR bits

divw[o,.] rD,rA,rB Divide word

divwu[o,.] rD,rA,rB Divide word unsigned

eqv[.] rD,rA,rB EQV (NOT (rA XOR rB)

extsb[.] rD,rA Sign-extend byte

extsh[.] rD,rA Sign-extend half-word

lbz[u,x] rD,d(rA) Load byte unsigned

lha[u,x] rD,d(rA) Load half-word and sign-extend

lhz[u,x] rD,d(rA) Load half-word unsigned

lmw rD,d(rA) Load multiple words

lwz[u,x] rD,d(rA) Load word

mcrf crD,crA Move condition register field

mcrxr crD Move XER[0:3] to CR field

mfcr rD Move from CR

mfspr rD,SPR Move from SPR

mtcr rS Move to CR

mtcrf crM,rS Update CR fields

mtspr SPR,rS Move to SPR

mulhw rD,rA,rB Multiply high word

mulli rD,rA,SIMM Multiply low immediate

mullw rD,rA,rB Multiply low word

nand[.] rD,rA,rB NAND

neg[o,.] rD,rA Negate (2's complement)

nor[.] rD,rA,rB NOR

or[.] rD,rA,rB OR

orc[.] rD,rA,rB OR with complement

ori rD,rA,UIMM OR with immediate

oris rD,rA,UIMM OR with shifted immediate

rlwimi[.] rD,rA,UIMM,MB,ME Rotate left word immediate and
mask insert

rlwinm[.] rD,rA,UIMM,MB,ME Rotate left word immediate and
mask

rlwnm[.] rD,rA,rB,MB,ME Rotate left word and mask

sc System call

slw[.] rD,rA,rB Shift left word (logical)

sraw[.] rD,rA,rB Shift right word (arithmetic)

srawi[.] rD,rA,UIMM Shift right immediate (arithmetic)

srw[.] rD,rA,rB Shift right word (logical)

stb[u,x] rS,d(rA) Store byte

sth[u,x] rS,d(rA) Store half-word

stmw rS,d(rA) Store multiple words

stw[u,x] rS,d(rA) Store word

subf[o,.] rD,rA,rB Subtract from

subfc[o,.] rD,rA,rB Subtract from, update carry

subfe[o,.] rD,rA,rB Subtract from, extended

subfic rD,rA,SIMM Subtract from immediate, update
carry

subfme[o,.] rD,rA Subtract from -1, extended

subfze[o,.] rD,rA Subtract from 0, extended

tw TO,rA,rB Trap word

twi TO,rA,SIMM Trap word immediate

xor[.] rD,rA,rB XOR

xorc[.] rD,rA,rB XOR with complement

xori rD,rA,UIMM XOR with immediate

xoris rD,rA,UIMM XOR with shifted immediate

NOTE: Many features have been omitted for brevity. This includes Floating-Point operations and registers, supervisor-level operations, string load and stores and ALTIVEC instructions.
Revision 1, October 12, 2010. © Copyright 2010, Tennessee Carmel-Veilleux <tcv@ro.boto.ca>, Find the original at http://www.tentech.ca/ppc-assembly-card

mailto:tcv@ro.boto.ca

	Notation
	Registers
	Label suffixes
	Load and store instructions
	Addressing modes
	Single loads and stores
	Multiple loads and stores

	Arithmetic and logic instructions
	Addition, subtraction, negation
	Bitwise logical operations and shifts
	Multiplication
	Division
	Rotate and mask
	Examples:

	Comparison instructions
	Condition register manipulation instructions
	Example:

	Branch instructions
	Field names
	Branch instructions
	BO values
	Simplified branches (or “classic” branches)
	Simplified branches tests (using b<test> as example)

	Special Purpose Register (SPR) Operations
	Trap and System Call Instructions
	Condensed alphabetical instructions list

